Knowledge-discovery incorporated evolutionary search for microcalcification detection in breast cancer diagnosis
نویسندگان
چکیده
OBJECTIVES The presence of microcalcifications (MCs), clusters of tiny calcium deposits that appear as small bright spots in a mammogram, has been considered as a very important indicator for breast cancer diagnosis. Much research has been performed for developing computer-aided systems for the accurate identification of MCs, however, the computer-based automatic detection of MCs has been shown difficult because of the complicated nature of surrounding of breast tissue, the variation of MCs in shape, orientation, brightness and size. METHODS AND MATERIALS This paper presents a new approach for the effective detection of MCs by incorporating a knowledge-discovery mechanism in the genetic algorithm (GA). In the proposed approach, called knowledge-discovery incorporated genetic algorithm (KD-GA), the genetic algorithm is used to search for the bright spots in mammogram and a knowledge-discovery mechanism is integrated to improve the performance of the GA. The function of the knowledge-discovery mechanism includes evaluating the possibility of a bright spot being a true MC, and adaptively adjusting the associated fitness values. The adjustment of fitness is to indirectly guide the GA to extract the true MCs and eliminate the false MCs (FMCs) accordingly. RESULTS AND CONCLUSIONS The experimental results demonstrate that the incorporation of knowledge-discovery mechanism into the genetic algorithm is able to eliminate the FMCs and produce improved performance comparing with the conventional GA methods. Furthermore, the experimental results show that the proposed KD-GA method provides a promising and generic approach for the development of computer-aided diagnosis for breast cancer.
منابع مشابه
A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملA Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis
Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...
متن کاملContrast Enhancement of Mammograms for Rapid Detection of Microcalcification Clusters
Introduction Breast cancer is one of the most common types of cancer among women. Early detection of breast cancer is the key to reducing the associated mortality rate. The presence of microcalcifications clusters (MCCs) is one of the earliest signs of breast cancer. Due to poor imaging contrast of mammograms and noise contamination, radiologists may overlook some diagnostic signs, specially t...
متن کامل16 Sakka
Early detection is the key to improve breast cancer prognosis. The only proven effective method of breast cancer early detection is mammography. An early sign of 30-50% of breast cancer is the appearance of clusters of fine, granular microcalcifications and 60-80% of breast carcinomas reveal microcalcification clusters upon histological examination. The high correlation between the appearance o...
متن کاملA Computer Aided Diagnosis System for Microcalcification Cluster Detection in Digital Mammogram
Mammography is the most efficient method for breast cancer early detection. Clusters of microcalcifications are the sign of breast cancer and their early detection is the key to improve
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Artificial intelligence in medicine
دوره 37 1 شماره
صفحات -
تاریخ انتشار 2006